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THE four-dimensional topological surgery “theorem” is still an open question for most 
fundamental groups. (The class of groups for which the theorem is known coincides with the 
elementary amenable groups [3], [S].) The general case, is equivalent (Ch. 12, [9]) to the 
existence of free,$ flat slices for certain class of links which we have called atomic [2]. There 
is some choice about the set of atomic links but they are all manifestly iterated composi- 
tions. In fact, part of the motivation for searching for new atomic families is the possibility 
that they will meet a known sufficient condition for the existence of free, flat, slices. 

Consider the following list of increasing conditions on smooth links in S3, the last of 
which 

0. 

is introduced in this paper: 

No condition: any link. 

l? 
All linking numbers are trivial. 

fi 
Homotopically trivial: there exists a homotopy from the given link to the unlink so 
that at no time in the homotopy do distinct components cross. 

0 
Boundary link (a-link): the link L bounds a Seifert surface X with n,,(L) + no(C) an 
isomorphism. 

fi 
Good boundary link. In the definition of boundary link the choice of Z determines a 
homomorphism rrl (S3\L)f (free group on meridians). Earlier [6] we defined L to be 
a good-boundary-link iff (4-) there exists C without ker(d) a perfect group. Here, let 
us take the stronger definition that there exists a Z with a standard Seifert form 

t Supported in part by NSF grant DMS 89-01412. 

$ There exists meridian loops for (S3\link) freely generating x,(LP\slices). 
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where Xij = 0 if i # j and Xii = 0 or 1, 1 < i, j < g. It may be a small but interesting 

open problem whether (44) o (4), certainly (4) * (4-). 

fl 
5. Boundary squared link (8’ - link). This is good boundary link for which 

(Z (G . . .Y q7, LL . . .> Pd can be chosen with trivialized Seifert form, as in (4), and 

further to the l/2 basis al, . . . , clg is represented by disjoint simple closed curves 

al,. . ., ag with US= 1 ai = 1lJ = C n X’ = EL’ for a second surface X’ meeting 

C transversely and satisfying Q,(A) + X,(X’) is an isomorphism. 

It is known that the 4-dimensional, topological surgery conjecture is equivalent to “all 
good boundary links are free, flat, slice.” Here we prove (Theorem 1.1) all ?-links are free, 
flat, slice. A special case of this was obtained earlier [6]: the Whitehead double of a 
boundary link is free, flat, slice. One new application is a class of atomic links which can be 
“sliced” by flat annuli-rather than disks. 

Link composition JOL, originating in a construction of J. H. C. Whitehead [12], makes 
sense given a link L in S3 and a link Ji in a framed solid torus (S’ x 0’); for each component 

Li of L replace that component with Ji by identifying an untwisted neighborhood of L; 
with S1 x 0'. Atomic links, devolve from the l-handles of a handle diagram. As a result all 

the links Ji, which we will encounter, have the additional feature that when S’ x D2 is 
included into S3 in the standard way it becomes the unlink. Also, for convenience, we extend 
definitions (l), (2), and (3) to links in S’ x D2 in the obvious manner: all components are 
required to be trivial in Hl(S1 x D2; 2); all homotopies and imbedded surfaces must lie in 
S’x D2. 

The standard atomic links [S], [9] are compositions of form Wh(Bing”(Hopf)), or 
(3)0(1)“0(0). They satisfy (4) but appear not to satisfy (5). Using what exists of the non-simply- 
connected theory it is possible (Theorem 2.1) to produce a new atomic family whose links 
are of the form (2)“~(3~(1)“~(0). These links seem tantalizingly close to satisfying condition 
(5) which roughly speaking is (3)2. 

Another way of expressing the underlying idea is to define l/2-Casson handles: infinite 
towers containing only the Whitney disks and not the accessory disks [9]: 

Fig. 1. 

Theorem 2.2 states that any good boundary link bounds disjointly imbedded l/2- 
Casson handles in S3 x [0, cc ). Unlike Casson handles (CH), we know that a l/2-CH cannot 

contain an imbedded disk with boundary the attaching circle. On the other hand, an infinite 
surgery procedure known as injlation [l] shows that any link bounding disjointly imbedded 
l/2-CH’s in S3 x [0, co ) is flat slice in a simply connected Z-homology S3 x [0, cc ) (the end 
changes) and there is no known example where such a link does not bound flat slices in D4. 

I thank the referee for several helpful comments. 
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$1. A LINK IDENTITY WITH APPLICATIONS TO THE LINK SLICE PROBLEM 

First consider two curves a and b in S3 meeting in one (maximally transverse) crossing. 
Assigning integral framings to a and b determines a two-dimensional thickening (up to 
isotopy) which is an imbedded punctured torus T- c S3. The punctured torus is a function 

of this data, T- (a, frame(a), b, frame(b)). Let 9’” denote n-framed surgery on a knot or link, 
we have: 

Warm up identity: Y’(aT-(a, n, b, 0) = Y”(u)/ round O-surgery. The “round O-surgery” 

is constructed by: (1) Forming disjoint copies of b, b+, and b- by pushing b (positively and 

negatively) normal to T-. (2) Delete the interior of closed regular neighborhoods M+(b+) 

Surger u, identify3 N+ e i3N- 
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and X-(b-). And (3) Glue &V+ to &V- so as to identify meridian with meridian and 
longitude with longitude. 

Proof: The two geometric shapes above stand for arbitrary simple closed curves in S3. 
The preceding diagrams represent equivalences of 3-manifolds. 

The general (high genus, several component) case described below requires more 
notation but its proof is parallel to the “warm up” and can safely be left as an exercise. Let 

a:, . . . , aX, b:, . . . , b;,, 1 I k 5 K be smooth simple closed curves in S3, disjoint except 
that a; n bf in one (maximally transverse) point XT. Assign framing frame (a!) = nf and 
frame (bf) = 0. Let c:, . . . , c;,, be framed arcs c: joining bf to a base disk Ak so that the first 
frame vector to bf and the inward pointing normal to aAk are tangent to cl at its beginning 
and end point respectively. Thicken the connected pieces according to framings rz: along a:, 
framing 0 along bf and the specified framing along cf. The result is surface C = I_I,X’. We 
have the following. 

Identity. yO(azq = Y$I:, a:,. . ., aiK,)/generalized round O-surgeries. 

The “generalized round O-surgery” may be described as follows. Let b u c be the l-complex 
consisting of circles and arcs which, apart from sub- and superscripts, are denoted by b or c. 
Let JV+ (JV-) be closed regular neighborhoods of b u c displaced positively (negatively) 
from X. Delete interior JV+ and interior Jf- and identify &V+ with &V- by the 
diffeomorphism induced by displacement normal to C. q 

Writing JV’(X-) as a union of components we have Jlr+ = Jr/-: u . . . u NS+ and 
M=JVCu . . . UJV,. 

Now consider the case L is a P-link. From the definition and the identity and L = ax 

where (a:, . . . , a:} = (a’s} is itself a boundary link as in (5). There is an integral homology 
equivalencef[6] which when covered by a bundle map becomes a degree = 1, normal map. 
There is a well defined “Arf invariant”EH2(Yo((a’s}); 2,) obstructing the extension of f 
to a degree = 1, normal map g as indicated in the diagram below. 

Y”( (a’s)) 1, ; S’xP=X i=1 
a 1 a 1 
N y+ ; s’xLP= Y. 

i= 1 

If g exists it may be normally borded (rel a) to an isomorphism on ai. For the present, 
we assume the obstruction vanishes and that (N, g) exist and that g is an isomorphism on 
rti. Eventually we will see that this obstruction is irrelevant. It does not actually obstruct the 
construction of a slice complement for L = ax but the existence of a subsidiary structure (a 
certain splitting) on that manifold. 

Let F(S) be the free group on the symbols 1, . . . , S. Define G = 
N x F(S)/JV: x g - JV; x sg. Note that F(S) acts freely on G and call the quotient M. 
Observe that aM obtained from aN by generalized round O-surgeries on along (b u c)* 

(using the notation of the identity for the standard curves on X). 
From the identity we have aM = Y’(L). Furthermore, if 0: and D;, 1 I s I S, are 

disjoint 3-cells in the boundary of the 4-ball then the obvious equivariant map from G to 

B4 x F(S)/D; x g = 0; x sg descends to a degree = 1 normal map 

(M, aM)-l, ;; S’xD3,a 
i=l > 
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Since 9% is an isomorphism on rri, a loop in 8N is null homotopic in N if it is disjoint 
from the surfaces E < 8N made by capping off Seifert surfaces z’. Each b has one normal 

push off bb ( + or - ) which is disjoint from z and another bX so that {b’} when 

appropriately based, are free generators for 7r1( I’). Since each generator b’ dies by becoming 
a bb in an adjacent fundamental domain, the map h is also an isomorphism on nl. 
Furthermore, the kernel group K, is simply the integral kernel of g, H,(N; Z), together with 
its integral intersection form ,i: H,(N; Z)@H,(N; Z) + Z, tensored over Z with Z[F(S)]. 

Since N U (B4 U {&) with zero framing 2-handle’s) is a closed spin 4-manifold, it follows from 
Rochlin’s theorem that A. is even nonsingular and has signature divisible by 16. Changing N 
by connected sum with copies of + Kummer surface we may assume a(n) = 0 and 
therefore that A is a sum of standard planes. It follows that n@,Z[F(S)] carries the trivial 
surgery obstruction. Thus the surgery conjecture, if true, would imply that h is normally 

cobordant to a homotopy equivalence (rel a): (M*, aA4*)2 
( 

; S’ x D3, 8 . This would be 
i=l > 

the desired (closed) slice complement for L, showing L has free, flat, slices. 
In this case, the unresolved status of surgery conjecture is no obstacle. In [7] we show 

that if a standard surgery kernel is represented by maps of spheres into a codimension = 0 
submanifold (interior N) whose inclusion into the domain of the surgery problem (M) is 
trivial on zl. then surgery can, in fact, be completed. 

Finally we describe the construction of M, with a x,-trivial surgery kernel, in the case 
that the Arf invariant in H2(Yo( {a’s)); Z,) is non-trivial. 

For brevity write ~‘({u’s}) = A. Form ? = (A x I) x F(S)/Jlr: x 1 x g - JV; x 1 x sg. 
Clearly F(S) acts freely on twith fundamental domain A x 1 x g and quotient I/. We now fix 
g and let s vary. By assumption (5) on the Seifert form, the collection of curves bb x 1 bounds 
imbedded surfaces {0’} in A x 1 whose interiors are disjoint from bb x 1, and bX x 1. Push 
the interiors of {0’} x g into the interior of A x I x g to obtain 0, a (disconnected) imbedded 
surface consisting of null homologies for bf x 1 x g = b,b x 1 x sg in A x I x sg. We define 0 to be 
the intersection of the F(S) covering translations of 0 with A x I x g; and similarly 8’ to be the 
intersection of translates of 0’. The surface 6’ consists of null homologies for bf x 1 x s- ‘g = 

b: x 1 x g in A x I x g. Furthermore 8’n b” = 8. Let E c V be the 3-manifold which 
results by ambient “surgery” on A along 0 x D* and projecting to I/. To ensure that E 
is imbedded, exploit 0’ n bX = 0 to isotope a portion of A containing 8’ along the I 
coordinate as in Fig. 3(b). Consider the effect of attaching 0 x D* to the domain and range 
of 1: The result is a Z-homology equivalence f: E + x = #S’ x S*‘s where the number of 
factors is 2 (genus 0). But ,4$((f) = OeH,(X; Z,) since the second homology of E is 
generated by tori = (circle in 0) x (normal circle) which are normally bounded by 3- 
manifolds = (circle in 0) x (normal disk). As before, this enables E to be “filled-in” with a 

normal map (N’, 8N’ = E)L( IqO x D* = tqS’ x D3’s, d = 2). Again the fundamental 

group can be adjusted and the signature of N’ can be reduced to zero, so that ker(g’) is a 
standard sum of planes represented by immersed spheres. 

Form M’ by replacing a complementary region of E in V (the one shaded in Fig. 3(b) 
with N’. As before there is a normal map h’: M --) Y and ker,(h’) is a standard surgery 
kernel for M’ satisfying the n,-null condition. 

Completing surgery, we obtain M’*. Either M* or M’* will serve as the closed slice 
complement. This proves: 

THEOREM 1.1. Any a*-link admits free, topologicallyjat 2-disk slices in B4. 0 
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caseArf(f)=O 

Surgery kernel is isolated in N x g 

(a) 

Case Ar f If 1 # 0, surgen/ kernel is isolated in N’x g 

lb) 

Fig. 3. 

We conclude this section with an application suggested by the theory of capped gropes 
([S] and [9]). The tip of a capped grope has the form: 

I \ \ 

6 

I 

/------. 

Fig. 4. 

That is kinky handles are attached to a symplectic basis of the final grope stage. 
Standard methods of stabilization and construction of dual spheres (Ch. l-3, [9]) permit 
additional (disjoining, framed) null homotopies to be added to ( + g, - g) pairs of double 
points on dual caps. Schematically such “extended” capped gropes would terminate as 

shown in Fig. 5. 
This leads to its own link slice problem-also intractable-but if the extra caps happen 

to be imbedded the associated link slice problem is covered by Theorem 1. In fact the 
imbedded case also demonstrates that the underlying link slice problem of the capped grope 
can be “solved” with (flat) annular slices connecting pairs of components instead of disks 
bounding each component individually. 
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Fig. 5. 

Extra cap 

cancel extra cap 

(a) 

Fig. 6. 

(b) 

Above, we indicate the link calculation near the tip of an extended capped grope in 
which the extra caps are framed imbeddings. 

The upper component bounds the shaded genus two surface Z. There is a symplectic 
basis of curves a,, u2, b, , b, on E. (a, and a, are drawn in Fig. 6(b).) The curves a, and a, 
bound secondary surfaces as in condition (5). As an aid to visualizing this observe the 
position of a, u a2 after Morse cancelling the two l-2 handle pairs. They become two 
parallel copies of a Whitehead curve linking the initial 2-handle: 

Fig. 7 

This is a boundary link in the solid torus linking the 2-handle curve. The link slice 
diagram of an “extended capped grope” of sufficient height will be a a2 link provided the 
extra caps are non-singular. In the singular case, additional “Whitehead components” 
appear to destroy the a2-structure. 
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52. EXTENSIONS OF CAPPED GROPES 

Let F be the free group on x1, . . . , x,. Let M = F/( [xi, XT]) the quotient of F by the 
normal subgroup generated by the relations that all generators commute with their 
conjugates. The following lemma essentially comes from Milnor [ 111. 

LEMMA 2.1. M is a jinitely presented nilpotent group. In particular n + l-fold com- 
mutators are trivial in M. 

Proof: If n = 1, M z Z and two-fold commutators [x,, XJ are trivial. Assume the 
lemma is proved for n - 1. Consider the quotient maps 8i, i = 1, ... ,n in which Xi is made a 
relator, the image is isomorphic to M, _ 1 and will be denoted by Mi. Since ker 8i is normally 
generated by Xi EM, the relations make ker 8i abelian. But u i ker 8i generates all of M SO 

C = n i ker Oi is central in M. Consider the exact sequence 

O-+C-+Mn- es, ai MI_,. 

Inductively, the group on the right has all its n-fold commutators q trivial. Thus all n-fold 
commutator in M, lies in the central subgroup C. Consequently n + l-fold commutators 
are trivial. 

For N a finitely generated nilpotent group the extension 

CN,NI + N + NICNJ’JI 

is a quotient of similar extension for a “freenilpotent” N for which the outside terms are 
well known [lo] to be finitely generated. Thus the outside terms above are finitely 
generated. Replacing this exact sequence with a fibration of K(a, 1)‘s we may suppose by 
induction on nilpotence height that K( [N, N], 1) and K(N/[N, N], 1) have finite 2-skeletons. 
Thus K(N, 1) also has a finite 2-skeleton and N has a finite presentation. The next lemma is 
proved in [S], also see [9]. 

LEMMA 2.2. Given a capped grope G (of group height 2 3) and a homomorphism 

X,(G)-% N to a nilpotent group. There exists a “z,-negligible reimbedding” of the upper stages 

so that the new capped grope G’ c G satisfies inc, n,(G’) c ker h. 0 

Combining the two lemmas we see that a capped grope (of grope height 2 3) can be 
replaced by G c G, a capped grope with special 2-complexes K attached to the generating 
loops of the caps. K is a surface E u cylinders: given a standard simplectic basis of loops 

4,. . . , ag,bl,. . . , b, and cylinders cl, . . . , ce have aci = ai u bi, i = 1, . . . , g. K may be 
singular but piping double points reduce all singularities to double points of Xc. 

Since K admits framed immersed dual spheres, framings may be standardized to agree 
with the next figure (Fig. 9). Also the extension of G can be iterated so that new (singular) 

Fig. 8. 
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Singular K 

Tip of G’ 

Fig. 9. 

K’s are attached to loops freely generating x1 (image K). This process may be carried to any 
finite stage n resulting in @’ c G. 

The handle diagram for a tip of G is shown below in the case genus (X) = 1 and C has 
one ( + ) double point (as in Fig. 8). 

Cancelling the upper 2-handle with either of two l-handles we obtain: 

Fig. 10. 

Notice that cancelling the remaining Morse pair would change the link diagram by a 
link composition where a link homotopically trivial in S’ x Dz (and trivial in S3) is inserted 
around each l-handle curve of G’. This produces a fragile looking class of atomic links: 

THEOREM 2.1. Given any integers m, n > 0. There exists a class of atomic links, i.e., links 

for whom the free slice problem is equivalent to the general surgery conjecture, of the form: 
(2)“0(3p( l)“o(O). That is m-homotopically trivial compositions of a Whitehead doubling (i.e., 

boundary composition) of n Bing doublings (i.e., linking no = 0 composition) of the Hopf link. 

Proof. Start with a capped-grope-P x S* of sufficient grope height. Then replace the 
two gropes G, and G, with m-fold extended objects Gy and G;. Compute the link diagram: 
the key illustration is Fig. 10. 0 

Next we define finite and infinite “l/2-Casson towers.” In the notation of [9], they are 
built from singular “Whitney disks” with the “auxiliary disks” omitted. Schematically they 
are represented in Fig. 1. More precisely they are defined by the class of 4-manifold handle 
diagrams indicated in Fig. 11. The case of least multiplicity is drawn explicitly. 

Here is an important difference between a l/2-CH and a CH. 
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Label 3 

Label 2 

Label 0 

Label 1 

Accessory curve 

Whitney curve 

Sing. Whitney disk 

Accessory curve 

Whitney curve 

Attaching curve 

Accessory curve 

First :stege 

= l/2 -c/f, 
l/2 Casson Handle 
if construction 
is infinite, 

Or 

=lj2-c2y 
1R Casson Tower 
of finite height = n 

Fig. 11. 

Fact 2.1. In no l/2 CH can the attaching curve bound an imbedded (even non-locally 
flat) disk. 

Proof. By compactness we may work, without loss of generality in a finite l/2-CT. Also, 
there is no loss of generality in considering the lowest multiplicity (unbranched) case 
(Fig. 11) since 2-handles may be attached to an arbitrary l/2-CT to reduce to this case. 

Let 0 label the attaching curve and 1, . . . , n label the accessory curves in the diagram 
(Fig. 11) for the unbranched height = n l/2 - CT and let the n + 1 label the highest 
Whitney curve. The other curves labeled “Whitney curve” and “singular Whitney disk” may 
be cancelled so that Fig. 11 becomes an n + 2-component link L” with labels 0, 1, . . . , n, n 

+ 1. It is sufficient for us to show that any b invariant of L” is non-zero. Cochran’s 
imbedded surface method [4], as explained to me by Kevin Walker, may be applied to 
compute: 

&(O, 1,0,2) = 2 

&,2(0,1,0,2,0,1,0,3) = 22 

j&~(0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4)=23 

~~L”(0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,. ..,n+ 1)=2”. 
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The possibility of indeterminacy does not bother us since this only arises if some shorter j 
is non-zero. This computation completes the proof. 0 

On the other hand we have the following counterpoint: 

Fact 2.2. Any link in S3 which bounds disjoint properly imbedded l/2-CH’s in 
S3 x [0, cc ) is smoothly slice in a smooth simply connected 4-manifold M with 
aM = S3 and inc, H,(S3; Z) + H,(M; Z) an isomorphism. 

Proof The idea goes back to Cannon’s “inflation” [l]. To construct M perform an 
infinite sequence of (O-framed) surgeries on all the Whitney circles of the l/2 CH’s which are 
above the bottom stage. The bottom stages now are regularly homotopic to slice disks. 
Consider the spheres made from the two possible Whitney disks for each Whitney circle, the 
original singular Whitney disk contained in l/2-CH and the new one introduced by surgery 
on the Whitney circle. These spheres are regularly homotopic (use the new Whitney disks) 
to disjoint imbeddings (with dual spheres) and surgery on these homologically cancels the 
surgeries on the Whitney circles (and preserves rrl = 0) to produce M. Because the spine of 
the l/2-CH’s may not possess disjoint dual spheres in S3 x [0, cc ), the end of M may 
develop a bad fundamental group at infinity and fail to be homeomorphic to S3 x [0, cc ). 
Since M is non-compact, there is no obstruction to extending a smoothing near the link slice 
across all of M. 0 

There is no known example of a (smooth) link in S3 which bounds disjoint l/2-CH’s in 
S3 x [0, co) but which is not (flat) slice in S3 x [0, cc ). Furthermore, the hypothesis of 
Fact 2.2 can often be achieved. 

THEOREM 2.2. Let L c S3 be a good boundary link (condition 4) or even one satisfying the 
weaker algebraic condition 4-. Then L bounds disjoint properly imbedded l/2-CH’s in 
s x [O, CO ). 

Proof According to [6] hypothesis (4-) allows the construction of an unobstructed 
smooth surgery problem g (inducing an isomorphism on rrr) 

(M4,9”(L))s((tlS1 x D3’s, #S’ x S”s) 

The kernel K, is represented by disjoint capped-grope-S2 v S2’s = W. Attach O-framed 
2-handles to the small linking circles to L to form M+ = M4 u 2-handles. 

By Lemma’s 2.1 and 2.2 we may choose W so that if self-finger moves are performed on 
the co-cores, c, of the 2-handles (call the result c’) to introduce sufficiently many relations of 
the form [xi, x7] then a second layer of caps may be added to W(cal1 the result W’) disjoint 
from c’. Let c1 be the Whitney disks for c’. We now work inside W+ by performing self finger 
moves to the subdisks c1 n W+. Since x1 W is contained in the free group generated by 
meridians to these subdisks, Lemmas 2.1 and 2.2 apply. After self finger moves on c,(to c;) 

there will be a reimbedding WI c W which may be capped off in W+ to form a reimbedding 
W: c W+ so that W: n (c’ u c;) = 8, W: is rr,-negligible in W+, and rrr ( W:) + 7tl ( W’) 

is zero. (The last two conclusion are the chief consequence of having two layers of caps: one 
exploits the abundant dual spheres below the top layer of caps to achieve both these 
conditions). Let c, be the Whitney disks for c;- 1 and similarly construct a reimbedding WT 
disjoint from (c’ u . . . u CL) with Wi n,-negligible in Wi- 1 and 7c1( W.‘) + wl( WL- 1) 
trivial. 
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If each W,? is made connected by adding a minimal collection of l-handles, preserving 
the inclusions Wi+,, c W:, then M+ \( n 8E 1 Wz u l-handles) will be proper homotopy 
equivalent and therefore homeomorphic [S] to S3 x [0, 00 ). The union c’ u c; u . . . is the 
spine of the disjoint collection of imbedded l/2-CH’s which was to be constructed. 0 
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